Ethics and "Omics" Jeffrey Engler, Ph.D. Dept of Biochemistry and Molecular Genetics Associate Dean, UAB Graduate School UAB Research Integrity Officer Office of Research Integrity/DHHS http://ori.hhs.gov/education/products/clinicaltools/data.pdf needs to acknowledge data storage in the cloud and the risks thereof. ${\it Jeffrey\ A\ Engler},\ 4/30/2014}$ JAE1 ### What is Scientific Misconduct? ### ORI Definition (42 CFR Parts 50 & 93): "Fabrication, falsification, or plagiarism in proposing, performing, or reviewing research, or in reporting research results." (also known as FFP) #### **UAB Definition:** "...fabrication, falsification, plagiarism, or other practices which seriously deviate from those that are commonly accepted within the scientific community for proposing, conducting, or reporting research Slide adapted from a slide by Dr. Charles Prince and Mr. Joe Roberson, 2009 ### Nine Areas of Responsible Conduct #### RESPONSIBLE CONDUCT OF RESEARCH (RCR) ORI supports several programs designed to promote education and training in the responsible conduct of research (RCR) that covers the following nine instructional areas: - Data Acquisition, Management, Sharing and Ownership a.k.a. "Data Management" - Conflict of Interest and Commitment - Human Subjects - Animal Welfare - Research Misconduct - Publication Practices and Responsible Authorship - Mentor / Trainee Responsibilities - Peer Review - Collaborative Science Reference: http://ori.hhs.gov/education/. Accessed 6/13/11 GENETICS High-proj BY ERIKA CHECK igh-thro the past that seem to rew genetics. But a fe being challenged warn of the stati data-intensive st The latest case Humans and mo copies of most g But in some case the other copy is gene is describe 2010, a team le Christopher Gi University in Car lished a study1 in mouse genes than previously l Now, research analysis led Dul estimate imprint COMPUTATIONAL SC ### **Materials** To a Data- Supercomputing power I of crystalline materials search for the next best When the Human Genom in 1990, the goal of sequ lion letters of DNA in a 15 years seemed a dauntin advances in sequencing te researchers to finish th today, sequencing a sing almost pedestrian. Now, n ers are hoping that a simi ramp-up will help them task of their own: using (culate the properties of a ety of solids to identify p breakthroughs for batterie many other applications. Today's machines aren' late all types of materials. of researchers think steady nology has now made st powerful and available end the task worth starting. " of computing is really ma possible," says Gerbrand materials scientist at the chusetts Institute of Tech in Cambridge, Richard 1 a computational material tist at Cornell University, SCIENCE PRACTICE ### Networking Knowledge C Stephen M. Fiore In Reinventing Disc computing pioneer Largues that the Intern cally change how we in standing of the universe and enthusiastic narrative ideas that could, indeed, r lutionize knowledge crea Nielsen offers a set of fasc ing examples to illustrate rapidly emerging method innovation produce impor discoveries. He goes furth suggest that these will cha our concepts of how scie gets done and what it mean be a scientist. However, t are substantial systemic **Science 336:36.** *I* Science <u>335.</u> ______ NEWS&ANALYSIS U.S. SCIENCE POLICY ### Agencies Rally to Tackle Big Data John Holdren, the president's science adviser, wasn't exaggerating when he said last week that "big data is indeed a big deal." About 1.2 zettabytes (1021) of electronic data are generated each year by everything from underground physics experiments and telescopes to retail transactions and Twitter posts. Holdren was kicking off a federal effort to improve the nation's ability to manage, understand, and act upon that data deluge. Its goal is to increase fundamental understanding of the technologies needed to manipulate and mine massive amounts of information; apply that knowledge to other scientific fields; address national goals in health, energy, defense, and education; and train more researchers to work with those technologies. The impetus for the initiative, to be managed by the Office of Science and Technology Policy (OSTP) that Holdren directs, comes from a December 2010 report by a presidential task force that, Holdren said, concluded the nation was "underinvesting" in the field. Computer scientists welcome the spotlight that the White House is shining on big-data research. "The announcements demonstrate a recognition by a broad range of federal agencies-Defense, Energy, NIH, and many more-that further advances in "big data" management and analysis are critical to achieving their missions," says Edward Lazowska of the University of Washington, Seattle, who co-chaired the 2010 report on the nation's digital future. "The White House [OSTP] deserves enormous credit for herding Science <u>336</u>:22. April 6, 2012 a decade within DOE's Advanced Scientific Computing Research program. The Defense Department says it plans to spend \$60 million this year on new awards for research on big data, but officials couldn't say if that amount is more than what it has spent in previous years. Even small investments are welcome. The U.S. Geological Survey points to a tiny (annual budget of \$650,000) synthesis and analysis center in Fort Collins, Colorado, that brings groups of scientists together for a week to crunch large data sets. The National Institutes of Health (NIH) is counting a ogy 1 well is ju: most in 20 capa revie and exan on co prog It's a run i gies' giant A very public case of data falsification and fabrication # DECEPTION AT DUKE: FRAUD IN CANCER CARE? Were some cancer patients at Duke University given experimental treatments based on fabricated data? Scott Pelley reports. http://www.cbsne ws.com/news/dec eption-at-dukefraud-in-cancercare/. Accessed 5/14/2014. ### What is Data? **True or False?** In research, only the information and observations that are made as part of the inquiry are considered data. ### What is Data? T/F?: In research, only the information and observations that are made as part of the inquiry are considered data Data also includes anything related to understanding the data generated by the project Samples collected, survey instruments, cell lines, informed consent documents, procedures, products generated, online content. ### **Key Concepts of Data Management** - Data Ownership - Who owns it? - Data Collection - Systemic and reliable - Data Storage - What should be retained? - Data Protection - Safe storage - Prevent tampering - Data Retention - How long to keep original data? - Data Analysis - Rubric for analysis and interpretation - Data Sharing - Dissemination plan - Data Reporting - Publication and authorship Adapted from Steneck, N.H. (2007), Introduction to the responsible conduct of research. http://ori.dhhs.gov/documents/rcrintro.pdf. Accessed 6/11/11. ### Who "Owns" Your Data? - The Principal Investigator? - All members of the research team? - The research subjects? - Your home institution? - The sponsor? - Grants ("assistance funding") - Contracts ("procurement funding") ### **Data Collection** ### What is the role of Data Collection in completing successful research? - 1. Ensuring the validity of data is key - 2. Ensuring reliability is key - 3. Ensuring both validity reliability is key - 4. It doesn't matter. ### Data Collection – Upholds the Integrity of the Project - Details the rationale for the project and its design - Yields reliable and valid results - Allow accurate analysis and assessment - Allows others to replicate the process and evaluate the results - Provides justification to sponsors for costs and expenditures. ### **Planning for Data Collection** A well thought out plan will help assure that all members of the project team collect data consistently. ### Questions that should be addressed: - Purpose of the research project - Rationale for methodologies chosen - Implementation of methodologies - What worked and failed to work - How data will be collected or analyzed - How to report unexpected findings or errors - Implications of the research and future directions. ### **Data Storage and Retention** - What data to retain? - Everything necessary to reconstruct the findings. - How long to retain it? - 3 years beyond the end of funding for the project. - Longer if there are patents to be filed. - Can establish precedence of the work ### **Data Protection** In the following list, which is the most effective way to protect project data? - 1. Strip identifiers from human subjects data - 2. Limit who has access - 3. Destroy written data after copying it to an electronic database How secure is storing data in the "cloud"? ### **Data Analysis** How the raw data is chosen, evaluated, and expressed - Determined by the P.I. and research team - Appropriate for the project's needs - All members agree with and comply with the data collection and analysis plans. ### **Data Analysis** ### Questions that the P.I. should consider: - What are the accepted standards of the field? - What data should be included? - Include or exclude outliers? - Dealing with missing or incomplete data - Responsible conduct: procedures to identify falsified or fabricated data Communicating expectations to the research team is critical! ### **Data Sharing and Reporting** Data sharing –presenting your results to the research community and the public Under what circumstances can/should you share data with others? - Before publication? - After publication? ## Who is Responsible for Data Management? The Principal Investigator has overall responsibility to develop and oversee the data management plan. ### All Members of the Research Team: - Project director - Students - Postdoctoral fellows - Clinical fellows - Research staff - Hospital staff - Statisticians - Consultants - IT support - Librarians ### For More Information Reference: http://ori.hhs.gov/general-resources-0. Accessed 3/7/12 ### Thank you! Office of Research Integrity/DHHS http://ori.hhs.gov/education/products/clinicaltools/data.pdf